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Correspondence 

Adaptive Scale Filtering: A General Method for 
Obtaining Shape from Texture 

J.V. Stone and S.D. Isard 

Abstract-We introduce adaptive scale filtering, a general method for 
deriving shape from texture under perspective projection without re- 
course to prior segmentation of the imagp into geometric texture ele- 
ments (texels), and without tbresholding of filtered images. 

If texels on a glven snrface CPU be identified In an image then the ori- 
entation of that surface can be obtained Ill]. However, there is no gen- 
erat characterimtion of texels for arbitrary textures. Fnrthermore, even 
if the size and shape of texels ML the surface is invariant with regard to 
position, perspective projection ensures that the size and shape of the 
corresponding image texels vary by orders of magnitude. 

Commencing with an initial set Fa of identical image filters, adaptive 
scale filtering iteratively derives a set FN which contains a unique filter 
for each image position. Each qlemcnt af FN is tuned to the three- 
dimensional structure of the surface; that is, all image filters in FN back- 
project to an identical shape and dze on the surface. Thus jmaae texels of 
various sizes, but associated with a ginde soptial scale on tbe sirface, can 
be identified in different parts of the image. When combined wifh con- 
ventional shape from texture methods, edges derived using FN provide 
accurate estimates of surface Orientation. Results for planar surfaces are 
presented. 

Index Term-Shape from texture, filter, adaptive, scale perspective. 

I.  INTRODUCTION 
The problem of shape from texture’ necessarily involves establish- 

ing a correspondence between similar ‘world’ entities and their 
counterparts in different parts of an image. For the class of methods 
considered here, the problem is usually posed in terms of a texture 
whose distribution on the surface is in some sense regular or homo- 
geneous. One then uses an observed departure from regularity of the 
distribution in the image to estimate the orientation of the surface 
being viewed. Under perspective projection, the image entities in 
question vary not only in their spatial distribution, but also in orien- 
tation and scale as a function of surface orientation and image posi- 
tion. Thus the problem of deciding which apparently different image 
entities are similar on the surface and the problem of estimating sur- 
face orientation are inextricably linked. 

Earlier workers have underestimated, or ignored, the problem that 
scale poses to establishing a surface-image correspondence. Kanatani 
and Chou [8] suggest several schemes for overcoming the problem of 
“resolution threshold and sub-texture,” but implement none, and 
admit to potential problems. Other workers [l 11 restrict analysis to 

1 The term “shape from texture,’’ as it is commonly used in the literature, is some- 
what misleading It IS used, as it I S  here, to describe methods for estimating the onen- 
tations of planar surfaces (e g ,  [I], [4], (51, [13]) and it is assumed that arbitrary 
shapes can be approximated by collections of planar facets However, the substantial 
problem of derivlng a useful shape description, e g , “cylinder with rlght angle bend,” 
from a collection of facet orientations, is not often addressed under this heading, and 
we are as guilty as others in this regard 
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synthetic images that can be segmented into geometric texels. Still 
others restrict analysis to surfaces with relatively low slant/focal 
length ratio (see [ 13]), thereby facilitating detection of image texels. 
Only in [4] has an explicit attempt to address the problem of scale 
been made. 

The following comment from [5] illustrates the problem that scale 
presents for shape from texture methods: 

This texture is relatively fine-grained, so for the highest slant the 
edge detector misses most of the edges in the upper part of the 
image, resulting in an under-estimation of surface slant. (p.53) 

11. SHAPE FROM TEXTURE METHODS 
A. Characterizing Texture 

Texture is often described in terms of “texels,” which are sup- 
posed to be shapes or patterns which recur on a surface. However, 
some surface textures (e.g., wood grain) have no texels in this sense, 
and others (e.g., grass) often fail to yield identifiable image texels. 
Nevertheless, such textures provide measurable image quantities 
which can be used to estimate surface orientation. 

The problem then is to characterize texture in a way that is SUE- 
ciently robust to allow analysis of images with a wide variety of tex- 
ture$ from which surface orientation can be inferred. One approach 
measures energy associated with Fourier components within a small 
band of spatial frequencies on the surface texture, or (equivalently) 
the continuous-valued outputs of band-pass filters [9]. Methods that 
take this approach [2], [6], [16] work well if there is a least one peak 
in the distribution of surface texture Fourier components which is 
well separated from neighboring peaks (this is discussed at some 
length in [16]), or if orthographic projection is assumed2 [9], [16]. 
Otherwise, in perspective images, image peaks associated with differ- 
ent spatial frequencies on the surface can mistakenly be treated as if 
they are derived from a single surface frequency. 

A more robust characterization is given in [ 11 where texture is de- 
fined in terms of line length. Line length can be measured using a 
band-pass filter even if geometric texels cannot be identified on the 
surface, as in the examples of grass and wood. The linas detected 
need not form part of conventional texels, and might be larger or 
smaller in scale than any conventional texels which happen to be pre- 
sent. On a page of print, for example, the obvious texels are letters, 
but if an image filter is too large to detect the outliines of individual 
characters, then its output might correspond to lines of print, or even 
paragraphs, as in a page seen at a distance. 

B. Assumptions About the Distribution of Texture 

All shape from texture methods begin by making some sort of as- 
sumption about the texture of the surface. They then compute surface 
orientation parameter values that back-project the image texture to a 
surface texture that comes as close as possible to satisfying the cho- 
sen assumption. In [15] Stone distinguishes methods making two 
different types of assumptions: 

1) Value-seeking methods, of which Witkin’s method [17] is an 
early and influential example, assume that some measure defined 

2 Methods that rely upon this assumption implicitly assume that the perspective image 
formed by any camera subtends a small vlsual angle, thus limiting perspechve effects 
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in terms of the surface texture has a particular value. Witkin as- 
sumes that the surface texture is isotropic. That is, all angles of 
orientation are equally represented by edges on the surface. Wit- 
kin's method generates surface orientation parameter values such 
that the estimated surface texture (found by back-projecting the 
image texture) is minimally anisotropic. More generally, value- 
seeking methods [33, [5]? [9], [ 151, [ 171 generate surface orienta- 
tion parameter values which maximize the agreement between the 
value associated with a measure (e.g., anisotropy) of thle back- 
projected image textwe and the assumed value (e.g., 0) of that 
measure for surface textures. 

2) Invarianwseeking methods, exemplified in [I], assume that 
some measure, definable over regions of the surface, has the same 
value for all regions. En [I], the assumption made is that line 
length per unit surhce area is the same in all regions of the sur- 
face. There is no assumption that lines have any particular density 
or orientation on the surface, only that the density is the same in 
all surfwe regions. Mer examples of invariance-seeking meth- 
ods are dmcribed in [I], [2], [4], [SI, [I I], [14], [15]. 

A given method might fail when applied to a given image if the 
imaged surface does not conform to the assumptions of that method. 
What concerns us here, hlowever, is that methods can fail for surface 
textures that do satisfy their assumptions, because perspective pro- 
jection causes surface edges with similar scales, but at different 
depths, to have different scales in the image. 

C. The Problem of Scale 
A line consists of a series of edges, and each of these edges can be 

associated with a zero-crossing in the second derivative of the energy 
in a band of spatial frequencies of the image luminance function. 
Thus the process of idelitifying an edge in the image depends not 
onty on the vmiation in image gray level, but also on the scale at 
which the image is filtered to detect edges. 

For the purpose of recovering surface orientation, it is important 
that texels associated with a single band of surJace spatial frequen- 
cies can be identified in different parts of the image. It doesn't matter 
which band of surface ftequencies is chosen, provided texture at 
those frequencies exists. But a method which confines itself to a fixed 
band of image frequencies identifies image texture associated with 
surface frequencies which depend systematically on image position. 

Even if We restrict our definition of texel to edges, the problem of 
identifying image edges that correspond to a single small band of 
spatial frequencies on the surface has to he addressed. To return 
briefly to the printed page analogy given above, it doesn't matter 
whether edges identified in the image correspond to text lines, para- 
graphs or ewn individual characters, provided all of the image lines 
are associated with only one type of surface entity. But for large val- 
ues of slant the image of a character on a near part of the page might 
have the same width as a line of print on a more distant part of the 
page. Therefore, conventional shape from texture methods [I], [ 5 ] ,  
[SI, [I I], [17] will tend to be inaccurate for surfaces with large values 
of slant, where the variation (due to projection) of image texel size 
and orientation across the image is large. 

111. ADAPTIVE SCALE FILTERING 
Adaptive scale filtering3 (ASF) is a method for computing a set FN 

of filters (one for each image position) such that the back-projections 
of all image filters are identical. We refer to such a set as an ideal 

Jlter set. Applying each filter in the ideal set at its corresponding 
point is equivalent to convolving the imaged surface with a single, 
fixed-sized filter. Filter output in all parts of the image therefore cor- 
responds to the same band of surface spatial frequencies. 

In describing ASF, when we refer to filtering an image with a set 
of filters, each filter in the set is associated with a single image posi- 
tion, and each filter is applied only at its associated image position. 

The process of ASF is illustrated in Fig. 1. Initially each identical 
circular (difference of Gaussian) filter in Fo is applied at its corre- 
sponding point in the image. Image edges are obtained from the un- 
firesholded zero-crossings in the filtered image. These edges are then 
used to provide an estimate of the surface orientation T. This estimate 
can be obtained by aqy one of several shape from texture methods 
(e.g., [SI, [ I f ,  [13j). The initial estimate TI is usually inaccurate be- 
muse shape from texture methods rely on the assumption that texels 
detected in a given image are derived from a similar scale on the 
surface. Using; the identical filters of Fo, this assumption is only true 
for a fronto-parallel plane. 

Edge Data 

Orlentstion (p,q) convoke with image 

Imago 

Fig. 1. Iterative process of obtaining edge data and estimating surface orien- 
tation. The filters in the first filter set are identical to each other. 

Using T,, a new set of filters F1 is constructed. The set F1 consists 
of filters, one for each pixel in the image, such that the back- 
projections of all filters are identical on the estimated surface with 
orientation T I .  Next, the image is filtered with the filter set Fl .  That 
is, at each image pixel we apply the corresponding filter from F I .  The 
resultant set of adges is used to generate a new estimate T2 of T, and 
then a new set of filters Ft is computed. This procedure is repeated, 
and has been fQund to converge for all images tested so far [13]. The 
result is a set of image filters FN that detects all and only events from 
a single spatial scale on the surface. 

The ASF method has points in common with the technique pre- 
sented by Blostein and Ahuja in [4]. They search for circular regions 
with uniform gray-levels at several different scales in the image. Ad- 
jacent circular regions are combined into candidate texels, and an 
orientation is sought which provides the best coverage of the entire 
image by texels of similar surface area. As with ASF, similar sized 
surface features project to different sized image features under per- 
spective projection, and are detected by the use of different sized im- 
age filters. 

3 In [ 123. [13], [ 143, [ 151 Ihls methwd was referred to as adaptive multiscale filter- 
ing, We have changed the name to avoid confusion with methods which simultaneously 
filter each una& paint with mdtip1e filters. 
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Several important differences are: 

1) ASF is not a shape fiom texture method in itself; it is a meta- 
method that can be used in combination with a variety of methods 
which use measures of texture to estimate surface orientation. In 
[13] ASF has been combined with the rnethods described in [ I ] ,  
[SI, [17], [5 ] ,  [14], [13], which embody a number of different as- 
sumptions about surface edge distributions. For example, [I] ,  [8] 
assume that edge density is invariant, whereas [ 5 ] ,  [15], [17] 
make assumptions about edge orientation. The work reported 
here has only combined ASF with methods that use edge data to 
estimate surface orientation. but it could equally well he com- 
bined with methods that use other measures of surface texture 
(e.g.. [9]). In contrast, the assumption that texel area is invariant 
is an integral part ofthe niethod presented in [4]. 

2) Blostein and Ahuja searc.h for closedcontour gray-level texels, 
whereas we work with edges only. 

3 )  Blostein and Ahuja empYoy a fixed set of image scales whereas 
ASF uses image scales which are iteratively adapted to suit the 
image being analyzed. 

4) Our use of (different sized image tiltcrs explicitly tracks one 
surface scale on all parts of the image. In 141 there is no explicit 
assumption that similar features in near and far part:; of the 
scene are detected by large and small filters, respectively, al- 
though this i s  presumably what often happens in practice. In 
141. surface orientation is determined on the basis of texel area 
alone, without regard to the scales of the circular regions which 
constitute each texel. 

Adaptive scale filtering has thus far been implemented for texels 
that we defined as edges on a planar surflice. However, the method 
could be implemented for other types of texel (e.g., lines, corners, 
geometric texels), for continuous-valued output of filters [‘,I, [ 101, 
and for non-planar surfaces. 

’l’lie following analysis assumes a planar tcxtured surface. 

A. Calculating the Dimensions of Image Filters 

W e  require that set of image filters which would be obtained by 
projecting a set of circular filters from thc estimated surface into the 
image. A small circular filter of diameter S on a surface projects to an 
elliptical image filter. Rather than filtering dn image with elliptical 
imagc filters (as in1 an earlier version of ASF [12]), we model eaLh 
image filter as circular. Thus we do not attempt to model the ;;& of 
image filters, but only their relative w. This provides considerable 
savings in generating each filter, and we hirvr found that the perform- 
ance of the method is not noticeably altered by the use of circular 
filter’;. 

I n  order to describe how to calculate the dimensions of image fil-  
ters we first need to establish a coordinate system. The equation of a 
plane can be written in terms of the ‘world’ coordinates (X ,  Y. Z) as 
A X  + BY + CZ-- D = 0. For an imaging system with focal length, 
f = I ,  and with the image plane at Z = 1 this can be written in terms of 
image coordinates (r, y )  = (XU, Y / Z )  as: 

Where K=WC‘  determines the distance along the 2 axis from the 
plane to the origin, and p = A/(  ‘ = -3 Z/ 3 ,Y, and q = B/C = -3 Z/a ). . 

Our objective i:; to compute the radius J of each circular image 
filter. such that each image filter back-projects to the same amount of 
surface area. This can be achieved as follows. Consider the surface 
area 4 corresponding to the image area a = K s2 of a circular image 
region w which is centered at i i  point x, J ’ .  ‘The mapping of area from 
surtace to image is described in terms of a point densityfunction pdJ 
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(2) 

wherepdfis defined [ I31 as: 

For a small circular image region centered at (x, y )  we can approxi- 
mate A as: 

A = a x p d f ’ ( x , y , p , q , K )  (4) 

Substituting S = (A/K)”* and a = KS’ into (4), rearranging, and taking 
square roots of both sides of(4): 

s(.x, .v) = S/l’df(.W, y , p , y .  K)y’ ( 5 )  

B. Simulating ASF Using Inverse Perspective 

The method of ASF requires that we compute the radius of a circu- 
lar filter for each image pixel. Having done so, we then need to apply 
each filter at its corresponding image pixel. The substantial savings 
that are normally made with a uniform set of circular difference of 
Gaussian filters (by using four one-dimensional Gaussian filters} are 
lost, because these savings depend upon all of the circular filters be- 
ing the same. 

An alternative to filtering the image with a set of filters of varying 
sizes is to transform the image using an inverse perspective transfor- 
mation, and then to convolve the result with a single circular image 
filter. The rationale behind this method is as follows. Using ASF, 
each new estimate of surface orientation defines a new set of image 
filters. A critical property of this set is that each Jilter maps to the 
Same amount ojarea on the estimated surface. However, it would be 
preferable if image filters back-projected so as to form surface filters 
with identical areas and shapes. 

Given an estimate of the surface orientation parameters, an in- 
verse-perspective transformation can be applied to the image to gen- 
erate a fronto-parallel view of the estimated surface. This transforma- 
tion consists of algorithmically rotating the estimated surface to a 
fronto-parallel orientation, and then reprojecting the ‘rotated surface’ 
into the image. Identical circular filters in this transformed image 
back-project to a set of identical circular filters on the estimated 
fronto-parallel surface. As with the ASF method, the accuracy of this 
process depends upon the accuracy of successive estimates of the 
wrface orientation. 

The value of S can be used to define a scale on the surface. A set 
of image filters whose sizes are a function of (5) can be made to de- 
tect surface events at the scale defined by the value of S. This method 
is almost identical to the camera rotation method for synthetic data 
described in [8], although the reason for using it is quite different. 

The above process is approximately equivalent., in terms of the 
sets of filters applied to a textured surface, to ASF. In practice it dif- 
fers from ASF in two respects: i) algorithmic rotation of a discrete 
image requires gray level interpolation. and this degrades the data 
(especially in the foreground) available to the circular filters of the 
inverse-perspective method, and ii) whereas the circular image filters 
of ASF are an approximation to the projection of circular surface fil- 
lers, the process of inverse-perspective provides an image for which a 
set of circular image filters projects exactly to a set of circular surface 
filters (for a given estimate of surface Orientation). In our experience, 
the disadvantage associated with i) appears to outweigh the advan- 
tage associated with ii ). and the results from this method are inferior 
to those from ASF. 
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Method 
K&C 
ABM 
ALO 

Fig. 2. Synthetic image of textured 
surface. 

P 4 Error 
0.010 -0.863 0.87' 
-0.047 -0.850 2.09' 
-0.14 -1.08 7.17" 

Fig. 6. Edge map from initial filter- 
ing of Fig. 5.  

Method 
K&C 
ABM 
ALO 

Fig. 3. Edge map from initial filter- 
g of Fig. 2. 

I 

P 4 Error 
0.209 -0.756 3.43' 
0.090 -0.837 8.89" 
0.105 -0.301 28.22' 

Fig. 7. Edge map from final filtering 
of Fig. 5 .  

IV. RESULTS 

Adaptive scale filtering has been tested on images of planar sur- 
faces. Each 512 x 512 image has 256 gray-levels. The focal length of 
the imaging system is 512 pixel units. Each image was filtered with a 
difference of Gaussian (DOG) with ratio of large to small Gaussian 
set to 1.6. The standard deviation of the larger of the two Gaussians 
used to construct the DOG filter at the image center was 5 pixel units 
in ill1 ASF iterations. All zero-crossings in the filtered image were la- 
beled as edges. 

ASF has been tested with modified forms of the methods de- 
scribed in [S](K&C), [ l](ALO), and the method in [ I4](ABM). The 
modified versions of the methods in [8], [ l ]  are described on pages 
71-72 and 85-87, of the technical report cited with [13]. For the pur- 
poses of this paper, these modified versions are basically the same as 
those described in [SI, [l].  Other shape from texture methods (see 
[ 131) have also been tested using other images, with similar results to 
those presented here. Detailed results are presented for method K&C. 
This method assumes that the texture on the surface is homogeneous 
in a sense which amounts informally to assuming that the distribution 
of surface texture in the image is the same as the distribution of sur- 
face area in the image." As described in [8], an iterative search is 
performed for surface orientation parameter values which project the 
image texture to a surface teKture having this property. 

The filter size at the center of the image remains constant across 
all iterations; this is achieved by setting K2 (1 + p 2  + q2)"' = 1 .  The 
size of image filters varies with respect to this filter according to the 
estimated surface orientation. 

Figs. 2 and 5 depict images of textured planes, with orientations 

4 The method assumes that the first moment vector of turfuce rexmrc around the image 
ongin is the same as the first moment vector of the surfutr, ( i r w  around the image origin 
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Fig. 4. Edge map from final filterin 
of Fig. 2. 

Fig. 5 .  Algorithmically rotated image 
of boxfile. 

Fig. 8. Successive estimates of (P,Q) 
for Fig. 2. 

Fig. 9. Successive estimates of (P,Q) 
for Fig. 5 .  

T =  (p, q) = (0.0, -0.839) and (0.287, -0.788), respectively. Fig. 2 is 
synthetic, and Fig. 5 was formed by algorithmically rotating the im- 
age of a fronto-parallel textured surface. This image of the side of a 
boxfile was obtained using a CCD camera. 

Tables I and I1 list the p and q values produced by ASF for Figs. 2 
and 5,  respectively, in conjunction with the three methods K&C, 
ABM and ALO, described above. The error is defined as the angle 
(in degrees) between the estimated and actual surface normal of a 
given surface. 

TABLE I 
RESULTS FOR FIG. 2 USING DIFFERENT SHAPE FROM TEXTURE METHODS 

face normal. 

TABLE I1 
RESULTS FOR FIG. 5 USING DIFFERENT SHAPE FROM TEXTURE METHODS 

The following refers to results obtained using method K&C([8]), 
but the general pattern of results described here is similar for other 
methods (see [14], [13]). Figs. 3 and 6 show the result of filtering 
with a set Fo of identical filters. This is equivalent to convolving the 

. . 
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image with a single filter, and represents the data available to a stan- 
dard shape from texture method not using ASF. Image edges reflect 
activity across a range of spatial scales on the respective surfaces. 
The estimates of surface orientation TI based on these edge maps, are 
consequently in considerable error. 'The dit'ference between the actual 
and wtiniated surface normals is 32.72' and 37.72", respectively, 
( T ,  =(0.012, 4 . 1 2 8 )  and (0.014, --0.048) for Figs. 2 and 5, respec- 
tivel!'). Since these results are based on image edge data obtained 
from a conventional image filtering operation, they represent the es- 
timates of surface orientation of method K&C using unthresholded 
edge data, and without ASF. 

I'or each image, a new set of image filters F , ,  based on the value 
of Ti- is constructed and applied to the original image. 'This new set 
of itnage filters is constructed according to the method outlined in the 
previous section, yielding a new filter for each image position. This 
prowss of filtering and re-estimation of T is repeated and converges 
at 7' =(0.01, -0.863) (Fig. 2), and (0.200. .-0,756) (Fig. 5). 'These 
represent errors in the surface normal of 0 87" and 3.43", respec- 
tively. The edge maps from the final filtering operations are shown in 
Figs. 4 and 7. Plots of estimated orientation versus iteration lor both 
Figs. 2 and 5 are given in Figs. 8 and 9, respectively. The estimated 
surface orientation at each iteration is marked on the curve of each 
plot, iind the actual surface orientation is marked with a cross. In both 
cases. using edge data generated by filtering the images with the filter 
set associated with the actual orientation (the ideal filter set) produces 
a negligible increase in accuracy, suggesting that the final edge maps 
are its good as they can be using a difference ofGaussian filter. 

v.  I)ISCIJSSION 

For Figs. 2 and 5 ,  edges associated with many spatial scales on the 
surface were initially detected. Conventionally, a proportion of such 
edges would be discarded on the grounds that they could no[ be in- 
corporated into image texels [ 1 I ]  or lines [ I  1, [5] .  In contrast, each 
edge in all edge maps of both images tcsted here was given equal 
weighting in estimating 1: 'Thus even the ill-defined surface objects 
correqonding to the image edges of Fig. 3 contribute to the estima- 
tion of surface orientation. Note that AS1 uwks well on an image 
(Fig 5 )  for which no patterned lexels can be identified. 

A conspicuous feature o f  the final edgc niaps is that they do not 
necessarily display perceptually salient fcatures of the image data. 
Thus i.he final set of filters used to analyze Fig. 2 does not detect only 
the circular texels apparent in the image. 'This is because the ASP 
method works, not by detecting salient surface features, but by detect- 
ing a ~ y  features which are reliably associated with a single scale on 
the surface. 'The method does not clean up. or segment, the image; it 
only finds that filter set which. for a given image, provides :I stable 
estiniate of surface orientation from one iteration to the next. 'I'he fil-  
tering operations are anchored to a particular scale S, on the surface. 
If edges associated with that scale can be detected in all surlace re- 
gions, and the distribution of the edges satislies the assumptions of 
the s.hape from texture method being used. tlien the surface orienta- 
tion c m  be obtained using / \SI ' .  This is true even for textures which 
contain almost no perceptually salient features. as in Fig. 5 .  

As we remarked earlier, ACF can be ust:d in conjunction with 
many different shape from texture methods. Here, ASF was paired 
with several such methods [ I ] ,  [8], 1141, and in [13], [ I41 ASF has 
beett applied to a variety of images, synthetic, algorithmically rotated, 
and natural. In all cases i t  converged, although not necessarily to a 
correct answer if the surface texture violated assumptions associated 
with the shape trom texture method used It is difficult to say any- 
tliitig very general about convergence bec:iuse it appears to depend 
on t t w  interaction between AS14 itsell: the diape from texture method 

used, and the different ways in which particular images can satisfy, or 
fail to satisfy, the assumptions of particular methods. 

A. Choosing a Surface Anchor Scale 

In both test images (and in all images we have tested) the size of 
the surface scale is anchored to a fixed filter size at the image origin. 
Choosing a fairly arbitrary fixed value of S provides a test of the 
ability of ASF to converge on a set of surface features associated with 
that scale, even though S may not coincide with a peak in the Fourier 
transform of the surface texture. 

A possible improvement would be to set the surface scale parame- 
ter S so that the characteristic frequencies of the final image filter set 
correspond to a high energy surface Fourier component. This could 
be achieved by using data from the first set Fo of identical image fil- 
ters to find that image region wh associated with the highest absolute 
lilter response. 'The surface orientation TI estimated from the data 
provided by Fo can then be used to estimate, via ( S ) ,  the surface scale 
.yh associated with the high energy Fourier component detected in wh. 
Now, instead of using the original value o f S  to define the anchor fil- 
ter size in the image, we could generate the second set of filters ac- 
cording to: 

This would ensure that each image filter in Fl hack-projected to 
the same size as the filter of wh in Fa (thus the filter cif wh remains un- 
changed). This, in tum. means that each filter in F, back-projects to a 
surface scale which is closer to s h  than the corresponding filter in Fo. 
The procedure described for adapting the scale factor Sh between Fa 
and Fl can be repeated for subsequent iterations.s 

13. Parallel Multiscale Filtering 

The question that originally motivated this work was: How might 
an area of visual cortex, with its multiplicity of receptive field types, 
compute the orientation of a textured surface? In terms of Marr's [lo] 
three levels of analysis (computational, algorithmic, implementa- 
tional), the method of ASF is pitched at the algorithmic level; it 
specifies a method for executing a particular computational task. The 
task consists of deriving a set of image filters F, appropriate to a par- 
ticular surface orientation T, where the values of I; and T are initially 
unknown. There are many algorithmic level descriptions for execut- 
ing this task, ofwhich is ASF is only one. 

In order to estimate surface orientation T,  a distribution of image 
filters F which can identify events derived from a small band of spa- 
tial frequencies on the surface must be established. F and T are co- 
determined, and in ASF improved approximations of each are used to 
obtain improved approximations of the other. Howe.\ier, the fact that 
I '  and T are co-determined does not mean that they cannot be evalu- 
ated independently (e.g.. T could be obtained from stereo informa- 
tion). In fact, we now argue that it is possible to evaluate F independ- 
ently of T, and then to use F to obtain the value of 1'. 

Consider a one-dimensional ( 1  D) image of a 1 D iextured surface. 
I n  this case we require only one parameter. say q, to specify the sur- 
fixe orientation, 'The ratio of image length to surface length is pro- 
portional to (( I + qy)/A72. Accordingly, in Fig. 10 the extent of im- 
age texels increases from left to right 

5. In subsequent iterations i t  would not be correct to use the image region wh with the 
highest filter response because an image luminance corrrciim would have to be made, ac- 
cording to the current estimate of the plane's orientation. 

6. This is essentially the mangeinem used iii [4]. :11id adopting ! I  wuuld eliminate the 
third oftlie four differences listed in sect:iiii 3 above. 
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Fig. 10. A 1D textured surface projected onto an image plane produces peak- 
activity contours in stacked arrays of filters. 

The required distribution of image filters F can be obtained from a 
bank B of stacked arrays of filters, where each array consists of a set 
of filters of a single size, and each image point is analyzed at many 
scales (i.e., by each level in the bank of filters).6 

Let a filter at image position y ,  and with size parameter 0, befb, a). 
For each image position y there is a corresponding filter f(v, a) which 
represents a peak or local maximum of activity in the filter bank B. If 
we trace a curve through the set of peaks in the filter bank (where each 
peak corresponds to a local maximum of filter activity) it would look 
something like the curve draw in Fig. 10. Moreover, the distribution of 
filters specified by such a curve is exuctly the distribution F of filters 
sought by the ASF method. If there are many peaks in the Fourier 
transform of the surface texture then there will be many parallel peak- 
uctivi@ contours in the filter bank. In sumary ,  each peak in the 
Fourier transform of the surface texture gives rise to a peak-activity 
contour in B; and each of these yields a filter set F, any one of which 
may be used to estimate the s u r b e  orientation T. 

The method of ASF was born partly from the observation that a 
peak-activity contour in a bank of filters specifies the orientation of 
a textured surface. In a similar vein, Johnston [7] has independ- 
ently proposed that the known distribution of cortical receptive 
field sizes and densities may facilitate visual interpretation of tex- 
tured surfaces: 

13ecause of the resolution threshold problem, the uniformity 
[homogeneity] of an oriented surface can only be detected for 
paths [peak activity contours] along which the density of tex- 
ture matches the scale of spatial analysis (p. 11) 

VI. CONCLUSION 
Adaptive scale filtering provides a general method for deriving 

shape from texture without recourse to prior segmentation of the im- 
age into discrete texture elements, and without any form of threshold- 
ing of filtered images. 

The problem of scale is an integral part of the problem of shape 
from texture. The process of adaptive scale filtering treats it as such, 
yielding accurate estimates of surface orientation even for images of 
surfaces with ill-defined textures. 
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